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Introduction

It  is  likely  that  not  all  observations  assimilated  have  equal  value  in  reducing  ocean  model  forecast  error.
Estimation of which observations are best and the determination of locations where forecast errors are sensitive
to the initial conditions are essential for improving the data assimilation system itself and for the design and
implementation of future observing systems.  This paper describes application of the adjoint-based procedure to
estimation of the impact of observations assimilated on reducing ocean model forecast error in the Real-Time
Ocean  Forecast  System  (RTOFS-v2).  The  technique  computes  the  variation  in  forecast  error  due  to  the
assimilated  data.  Observation  impacts  are  estimated  simultaneously  for  the  complete  set  of  observations
assimilated.  The method is computationally inexpensive and can be used for routine observation monitoring.
This aspect of the adjoint technique is advantageous since ocean observing and assimilation/forecast systems
are in continuous evolution requiring an efficient procedure that allows the impact of observations to be regularly
assessed.  Data impacts can be partitioned for any subset of the data assimilated: instrument type, observed
variable, geographic region, or vertical level, with traceability to individual platforms based on station identifying
call signs. The results shown here illustrate some of the types of diagnostics that can be routinely obtained with
the adjoint method in an operational context.

RTOFS-v2

The  ocean  forecast  component  of  RTOFS-v2  is  the  Hybrid  Coordinate  Ocean  Model  (HyCOM),  which  is
configured on a global tri-polar grid with horizontal equatorial resolution of .08º or ~1/12º (~7 km mid latitude).
This  configuration  makes HyCOM eddy  resolving.  Eddy resolving  is  important  for  ocean  model  dynamical
interpolation skill in data assimilation. HyCOM is configured with 41 hybrid vertical coordinate surfaces. The data
assimilation component of RTOFS-v2 consists of a three-dimensional variational (3DVAR) analysis. The analysis
variables are temperature, salinity, geopotential, and u, v vector velocity components.  All variables are analyzed
simultaneously in a multivariate procedure that permits adjustments to the mass fields to be correlated with
adjustments to the flow fields. The 3DVAR observation vector contains all of the synoptic temperature, salinity
and velocity observations received at the center within the 24-hour update cycle interval.  The analysis makes
full use of all sources of the operational ocean observations. RTOFS-v2 routinely assimilates about 2 million
observations per day onto the global HyCOM grid, which contains more than 520 million grid points.

Adjoint Procedure

Adjoint-based observation sensitivity provides a feasible all at once approach to estimating observation impact.
Observation impact depends on the forecast error metric, the innovations (model-data differences at the update
cycle  interval),  and  the  number  of  observations.   Since  forecast  errors  grow and  decay  at  different  rates
throughout the model domain, a large model-data difference does not necessarily lead to a large data impact.
Observations can make small changes to the initial conditions and still have a large data impact if the location of
the observation is in a dynamically sensitive region.  Here, the forecast error metric is defined as the difference
between forecasts of 48 and 72 hours valid at the same time.  Forecast errors result from inaccuracies in the
initial conditions, the atmospheric forcing, and the non-linear forecast model.  However, differences between
forecast errors from forecasts of different lengths verifying at the same time are solely due to the assimilation of
observations, which makes it an appropriate cost function for data impact studies.  For example, if there were no
observations assimilated 48 hours ago, then the trajectory of the 48 and 72 hour forecasts will be the same and
their differences will be zero at the verifying analysis time.  Observations, however, are usually assimilated and
the two forecast trajectories will differ as a result.  Forecast error gradients in model space are projected into
observation space using the adjoint of the 3DVAR.  This yields an observation sensitivity vector ∂J/∂y, with its
elements at the observation locations.  ∂J/∂y is then used in the observation impact equation: δe48=< (y-Hxf), ∂J/∂y) >, where the brackets represent a scalar inner product and (y-Hxf) is the innovation vector
(Langland and Baker, 2004).  A negative δe48 value indicates a beneficial observation in that assimilation of the
observation  reduced HyCOM 48 hour  forecast  error,  while  a  positive  δe48 value  indicates  a  non-beneficial
observation (forecast error actually increased from assimilation of the observation).  Non-beneficial impacts are
not  expected  since  the  assimilation  is  expected  to  decrease  forecast  error  by  producing  improved  initial
conditions.  However, if non-beneficial impacts occur, and they are persistent, then that may indicate problems
with the observing system or model performance.  Thus, the data impact system can be used as an effective
monitoring  tool  for  diagnosing  data  quality  issues  or  identifying  areas  where  the  model  has  significant
predictability limits.



Results

Forecast error gradients are computed daily for differences between 48-hour and 72-hour HyCOM forecasts of
temperature, salinity, and the verifying analysis.  The 3DVAR adjoint is then executed to obtain the observation
sensitivities  for  use  in  the  observation  impact  equation.   Data  impacts  are  available  every  day  for  each
observation assimilated and can be partitioned into contributions made by instrument type, geographic domain,

and  vertical  level.   Figure  1a  shows  instantaneous
temperature  forecast  error  gradients  at  the  surface.
Positive and negative areas of forecast errors are seen
indicating that on any given day HyCOM forecast errors
are  both  increasing  (positive  values)  and  decreasing
(negative values).  These patterns will vary with depth and
evolve  over  time  in  accordance  with  changes  in  the
observing systems assimilated and the variable skill of the
HyCOM forecast.   Temperature forecast  error  gradients
averaged over 10 days are shown in Fig. 1b.  In general,

negative  values  are  found  almost  everywhere,  an  indication  that  the  assimilation  is  consistently  reducing
HyCOM 48-hour forecast error.  Beneficial impacts are the greatest in western boundary currents, Antarctic
circumpolar current, and eastern tropical Pacific.  However, persistent non-beneficial (positive) impact areas are
also seen. These areas of forecast error growth could be due to localized, reduced HyCOM predictability arising
from instabilities in the system and need further investigation.

It  has  been  demonstrated  that  routine  assimilation  of  large  numbers  of  observations  work  together  to
consistently reduce global HyCOM 48-hour forecast error.  An advantage of the adjoint method is that it allows
quantification of impacts from the assimilation of individual observations.  To summarize these results, impacts

are partitioned by data type and averaged over a 10-day
period.  Impact results presented for any group partition is
the sum of all individual observation impacts in that group
normalized  by  the  number  of  observations.   Figure  2
shows  the  locations  of  beneficial  and  non-beneficial
impacts  of  Argo  temperature  profiles  assimilated  during
the 10-day period.  A large number of Argo profiles have
beneficial  impacts from the assimilation,  but  some Argo
profiles have non-beneficial impacts that occur in a fairly
random  pattern.  Figure  3  shows  a  comparison  of  the
impacts  of  temperature  observations  from  various

observing systems.  Profiles from animal borne sensors are found to have the greatest  impact  at  reducing
HyCOM  forecast  temperature  errors,  followed  by  Argo.   The  animal  sensor  data  are  profiles  from  CTD
instruments attached to animals, in particular Elephant Seals.  The foraging behavior of the animals brings them
to ocean frontal zones in search of food, primarily in hard to reach polar-regions. The seals basically serve as

targeted  observing  platforms  providing  high  impact  data  in
dynamically sensitive areas.

Summary

The adjoint method has successively been applied to RTOFS-v2
to assess data impacts.  The method is computationally efficient
and can be used for routine observation monitoring in operations.
There  is  no need to  selectively  remove observing  systems to
determine impacts as in a data denial experiment.  As such, the
method automatically adjusts to changes in the observation suite
assimilated  as  new  observing  systems  are  introduced  and  to
changes in the forecast model as model resolution increases or
new physics are introduced. It is now possible to efficiently and
routinely  evaluate  the  entire  global  set  of  oceanographic
observations assimilated in RTOFS-v2, determining which data

are most valuable and which data are redundant or do not add significant value. 
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Figure 1. Surface temperature forecast error gradients.

Figure 2. Beneficial (left) and non-beneficial (right) impacts of
Argo temperature profiles: 27 Mar – 5 Apr 2021. 

Figure 3. Temperature observing system impacts.
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Efforts to modernize the forecasting systems at  the National Oceanic and Atmospheric Administration
(NOAA) have  resulted  in  the  collaborative  development  of  the  Unified  Forecasting  System  (UFS).
Comprising  the  core  of  future  operational  systems  for  global  weather,  sub-seasonal  and  seasonal
forecasting,  the  NOAA UFS  research  to  operations  (R2O)  program builds  on  several  key  features,
unification  of  the  data  assimilation  with  the  Joint  Effort  for  Data  Assimilation  Integration  (JEDI),
development  of  the  fully  coupled  atmosphere-ocean-ice-wave  model,  modernization  of  observations
processing, modularization and unification of the workflow, and verification of the analysis and forecast.
Under the UFS R2O program, the JEDI-based sea-ice ocean coupled assimilation system (SOCA) has
been integrated with the Modular Ocean Model version 6 (MOM6, [1]) and the Community Ice Code
version 6 (CICE6, [2]) to establish the NG-GODAS system. 

We introduce here the NG-GODAS 40 year reanalysis project: experiment configuration, observation data
archiving,  and  preliminary  results.  In  the  JEDI  object  oriented  prediction  system  (OOPS)  software
structure, the SOCA interface provides a core framework of algorithms that combine generic building
blocks for the MOM6 and CICE6 data assimilation application algorithms. A few articles (Trémolet, 2020,
Holdaway et al., 2020, and Honeyager et al., 2020) introduce a key concept of the JEDI software system,
to highlight how different data assimilation systems can be seamlessly established through the OOPS
software infrastructure. A triple horizontal mesh grid, 1o global configuration of the MOM6 model with 75
vertical layers is coupled with the CICE version 6 featuring multiple ice thickness categories and  the
elastic–viscous–plastic sea ice dynamics model. The initial conditions are set with the OMIP-2 MOM6-
SIS2  simulations  (Tsujino  et  al.,  2020).  The  MOM6-CICE6  coupled  system is  forced  with  a  set  of
atmospheric fluxes from the NOAA climate forecast system reanalysis (CFSR, 1979~2000) and the global
ensemble forecast system (GEFS, 2000-2019). 

In addressing the bias issues of the CFSR fluxes, the climatology of the DRAKKAR DFS52 forcing set
(Dussin et al., 2014) was applied to adjust precipitation rate, downward shortwave, downward longwave,
and wind of the CFSR forcing set. Along with the SOCA MOM6-CICE6 model interfaces, the generic
marine observation operators and data handling capabilities of the JEDI unified observation operator and
interface for observation data access (IODA) systems are also utilized. In order to unify the various types
of file formats and levels of observation data sets, we established a 40 year marine observation database
system in the JEDI IODA format. 

Table 1 shows satellite and in-situ observation data sets used in the 40 year NG-GODAS reanalysis
experiment:  satellite  sea  surface  temperature,  sea  surface  salinity,  in-situ  temperature  and  salinity,
absolute dynamic topography, sea ice concentration, and sea ice freeboard thickness. For the 40 year
NG-GODAS reanalysis production run, we have validated the analysis results by comparing them with the
current  operational  ocean  monitoring  data  assimilation  systems,  GODAS  and  CFSR.  Results  are
compared against the UK MET office Hadley center EN4.0.2 objective analysis [3] for the time period
2015~2016. In Figure 1, the temperature and salinity mean analysis fields are compared to understand
how closely each operational system matches the UK MET office EN4 analysis. Compared against the
current  operational  systems,  the  NG-GODAS  provides  considerably  improved  analysis  results.  In
particular, salinity fields of the NG-GODAS analysis are significantly closer to the EN4 analysis output.
This preliminary result demonstrates that the SOCA-based NG-GODAS analysis system is well suited to
serve as a building block for the future marine data assimilation system of the NOAA UFS R2O project.



Table 1. Marine observation data sets assimilated in the NG-GODAS 40 year reanalysis experiment.

Figure  1.  Upper  300m
temperature (left columns) and
salinity  (right  columns)  mean
difference  fields  for  GODAS
(top), CFSR (middle) and NG-
GODAS  (bottom).  Differences
were computed against EN4.2.

References
Dussin, R., Barnier, B., Brodeau, L., and Molines, J. M. (2014). The Making of Drakkar Forcing Set DFS5,
DRAKKAR/MyOcean Report 01-04-16.

Holdaway, D., Vernières G., Wlasak M., and King S., 2020: Status of Model Interfacing in the Joint Effort
for Data assimilation Integration (JEDI). JCSDA Quarterly, 66, Winter 2020.

Honeyager, R., Herbener, S., Zhang, X., Shlyaeva, A., and Trémolet, Y., 2020: Observations in the Joint
Effort for Data assimilation Integration (JEDI) - UFO and IODA. JCSDA Quarterly, 66, Winter 2020.

Trémolet, Y., 2020: Joint Effort for Data assimilation Integration (JEDI) Design and Structure. JCSDA
Quarterly, 66, Winter 2020.

Tsujino,  H,  S  Urakawa,  Stephen  M  Griffies,  Gokhan  Danabasoglu,  Alistair  Adcroft,  A  E  Amaral,  T
Arsouze, M Bentsen, R Bernardello, C Böning, A Bozec, E P Chassignet, S Danilov, and Raphael Dussin,
et al., August 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental
protocols  of  the  Ocean  Model  Intercomparison  Project  phase  2  (OMIP-2).  Geoscientific  Model
Development, 13(8), DOI:10.5194/gmd-13-3643-2020.

[1] https://www.gfdl.noaa.gov/mom-ocean-model 
[2] https://github.com/CICE-Consortium/CICE
[3] https://www.metoffice.gov.uk/hadobs/en4 



Implementation of Ocean Biogeochemical Modeling and Ocean Color Data Assimilation within
NOAA/NCEP’s Next-Generation Global Ocean Data Assimilation System (NG-GODAS)

Xiao Liu1 (Xiao.Liu@noaa.gov), Jong Kim1, Avichal Mehra2, Daryl Kleist2, Guillaume Vernieres3, Hae-Cheol Kim4, Eric Bayler5

1IMSG@ NOAA/NWS/NCEP/EMC, 2NOAA/NWS/NCEP/EMC, 3JCSDA, 4UCAR@ NOAA/OAR/GFDL, 5NOAA/NESDIS/STAR

Ocean biogeochemical and ecological forecasts provide early warning of ecosystem changes and their
impacts on water quality,  human health, and/or regional economies, allowing for sufficient lead time to
develop mitigation strategies and take corrective actions. Ocean biogeochemical and ecological processes
also provide important  geophysical  feedback to weather and climate systems, through complex ocean
biophysical  and  ocean-atmosphere  interactions.  The  inability  to  represent  ocean  biogeochemical  and
ecological processes and their feedback to oceanic and atmospheric physics in the current generation of
operational forecast systems, as well as our limited understanding of the underlying mechanisms of past
extreme weather and ecological events, reduces our capability to predict critical weather conditions and
ecological  “tipping  points”  and  affects  management  effectiveness  at  both  global  and  regional  scales.
Through  a  project  funded  by  the  JPSS  Proving  Ground  and  Risk  Reduction  (PGRR)  program,  we
developed  and evaluated  ocean biogeochemical  modeling  and  data  assimilation  tools  as  well  as  the
required infrastructure at EMC, in support of NOAA/NCEP’s operational weather, subseasonal-to-seasonal
(S2S),  and  ecological  predictions.  This  document  provides  an  overview  of  key  milestones  of  the
implementation of  an ocean biogeochemical  model  and the assimilation of  satellite-based ocean color
observations  within  NOAA/NCEP’s Next-generation  Global  Ocean  Data  Assimilation  System  (NG-
GODAS).

1.  Ocean biogeochemical modeling 
The biogeochemistry model  implemented in NG-GODAS is adapted from NOAA/GFDL’s BLING model
(Biogeochemistry with Light, Iron, Nutrients and Gas version 2, or BLINGv2; Dunne et al., 2020), and is
coupled to the Modular Ocean Model version 6 (MOM6; Adcroft et al., 2019) currently being implemented
in the Unified Forecast System (UFS). BLINGv2 states are treated essentially as generic tracers in MOM6,
and so are subject to advective and diffusive transports, as well as source and sink terms from boundary
fluxes  (e.g.,  atmospheric  deposition,  riverine  inputs)  and  biogeochemical  processes  (e.g.,  burial,
denitrification). The coupled MOM6-BLINGv2 model has been successfully tested at horizontal resolutions
of  1° and 0.25° using NG-GODAS. Preliminary results suggest that upper-ocean physics (e.g., SST) are
moderately sensitive to ocean biogeochemical (e.g., Chl-a) variability with a response of up to 1°C in some
regions (Figure 1).

Figure 1. a) SeaWiFS Chl-a climatology (Nov.) used to calculate
short-wave radiation penetration in the MOM6 physics-only run;
b)  MOM6-BLING  simulated  Chl-a  averaged  over  November
2011;  and  c)  difference  in  sea  surface  temperature  (SST)
between  the  two  experiments,  suggesting  that  upper-ocean
physics, such as SST, are sensitive to Chl-a variability.



2. Ocean color data assimilation
NG-GODAS employs the sea-ice ocean and coupled assimilation (SOCA), based on the Joint Effort for
Data Assimilation Integration (JEDI). The JEDI project is the backbone for performing data assimilation
across the variety of UFS applications. We further developed SOCA to allow the integration of near real-
time satellite ocean color products into MOM6-BLINGv2 simulations. 

2.1 Ocean color observations  
Level-2  data  streams  have  been  established  from  NESDIS  into  NCEP  for  NOAA-20/VIIRS  and
S-NPP/VIIRS historical and near real-time ocean color observations (i.e., chlorophyll concentration, or Chl-
a, and particulate organic carbon, or POC), specifically from NOAA CoastWatch and NASA OB.DAAC to
NOAA’s  Research  and  Development  High-Performance  Computing  System  (RDHPCS).  The  required
software to preprocess VIIRS Level-2 ocean color products for basic quality control and ingestion by the
JEDI system were developed. Specifically,  these observations are converted into a unified data format
(i.e.,  IODA  compatible)  that  can  be  ingested  by  any  model  employing  the  JEDI  system  for  data
assimilation.

2.2. Chl-a and POC analysis  
To assimilate Chl-a and POC, the corresponding biogeochemical states saved in the model restart file are
updated during each data assimilation cycle (i.e., 24 hrs) based on increments calculated in JEDI/SOCA.
Other key states, such as phosphate concentration, are updated by solving BLING internal equations for
phytoplankton growth and nutrient  limitation based on chl-a or POC increments.  The background error
covariance (“B”) matrix for the ocean color observations will be computed using the “Background error on
Unstructured Meshgrid” (BUMP) in the SABER package of JEDI, and is assumed to be diagonal. For each
grid-point,  the observational  error variance will  be set to be proportional  to the observed values (e.g.,
observational error = 30% for Chl-a; Tsiaras et al., 2017). The UFOs will estimate “ocean color” properties
from the biogeochemical model as the corresponding variables averaged over the first optical depth at
each grid-point.  Figure 2 shows a preliminary  Chl-a daily  analysis  using the 3-dimensional  variational
(3DVAR) scheme.
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Figure  2.  (upper  panels)  Simulated
“background”  Chl-a  in  MOM6-BLING  and
Level-2  Chl-a  derived  from  NOAA-20/VIIRS
imagery  on  2018/04/15,  used  for  Chl-a
assimilation;  (lower  panels)  Chl-a increments
calculated  based  on  the  3DVAR  scheme  in
SOCA, shown as the absolute and percentage
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The  National  Centers  for  Environmental  Prediction  (NCEP)  develops  and  delivers  operational
environmental forecasting systems to its partners within NOAA (e.g.,  NOS, NHC, etc.) and externally
(e.g.,  US Coast Guard). These operational systems are driven by large earth observing systems that
measure various parameters. Observation data sets are received by NCEP Central Operations (NCO)
through the Global  Telecommunication System (GTS) in  BUFR format  and  from the NOAA/NESDIS
operational server (PDA - Production Distribution and Access) in netCDF format and are saved on the
dcom server and in individual data tanks based on the source of the measurement (e.g., BATHY, TESAC,
SUBPFL,  SHIPS,  etc.).  BUFR  decoders  are  used  to  read  the  data  from  the  BUFR  file  using  the
pneumonics of certain types of data header file [1]. 

The marine data observations  in BUFR format consist of in-situ temperature and salinity and sea-ice
concentration and observations in netCDF format consist of satellite sea surface temperature (SST), sea
surface salinity  (SSS) and absolute  dynamic  topography (ADT).  These data are then converted into
model specific formats to be ingested by each model’s data assimilation system. This involves model
specific data conversion efforts and data storage problems. Requirements for observation files and I/O
handling involved in different modeling and data assimilation workflows are incredibly diverse. Creating a
common software system for  organizing  and  storing the vast  amounts of  observation data  is  highly
desirable to maintain current and future operational forecast systems in a sustainable way. 

As part  of  a modernisation effort  of the ocean forecasting systems under the umbrella of  the NOAA
unified forecast system (UFS) program, a data unification project has been started with the Joint Effort for
Data Assimilation Integration (JEDI) to establish a model agnostic method of sharing observation data
and  exchanging  modeling  and  data  assimilation  results. The Interface  for  Observation  Data  Access
(IODA) is a subsystem of JEDI that handles data processing and provides for a common data format in
netCDF.  This  allows for  the long-term storage of  data  and the creation of  historical  databases.  The
underlying structure of the IODA format is to represent the variables (e.g., temperature, salinity, etc.) in
columns and the locations in rows. Metadata tables are associated with each axis of the data tables and
the  location metadata  hold  the values  describing each  location,  and which  are  appropriate  for  each
observation type (e.g., latitude, longitude). Actual data values are contained in the third dimension of the
IODA data table:  observation values, observation error, quality control flags, and simulated observation
values of H(x) at different stages of the data assimilation process. The python-based IODA converters for
all  the  marine  surface  and  profile  observation  data  types  described  above  have  been  successfully
developed and merged into the JEDI repository. 

A 40-year historical IODA-based database of the marine observations were collected for the 1o global
reanalysis experiment of the NOAA-NCEP Next Generation Global Ocean Data Assimilation System (NG-
GODAS),  described in  Jong-Kim et  al.,  (2021).  The database covers the period 1979-2020. Table  1
describes each parameter, source, datatype and period of data availability. The goal of this project is to
create  an  expandable  database  of  quality  controlled  observations  for  40  years  to  be  used  for
development,  experimentation and reanalysis.  These archived observational  datasets  will  be used to
develop the necessary observation quality control schemes through the JEDI Unified Forward Operator
(UFO),  which  does  the  comparison  between  the  observations  and  the  forecast  model  through  H(x)
calculation (Honeyager  et al.,  2020). Figure 1 shows an example of the JEDI-based UFO application
result from the AVHRR SST data sets in the NG-GODAS reanalysis experiment.



Table 1: 40 year marine observation datasets archived in JEDI-IODA format.

Figure 1. Left panel is time series statistics of the satellite SST observation-analysis (oma) and 
observation-background (omb). Right panel is data counts for assimilation and no assimilation. 1deg 
experiment. AVHRR ESA-CCI data sets are applied for the time period 1979~1990. 
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Introduction 

The most detailed representation about the variability of the dynamic structure of the ocean can be 

derived from the results of calculations using hydrodynamic models with the assimilation of available 

observational data. NEMO model (NEMO ocean engine) coupled with the thermodynamic sea ice model 

(The NEMO Sea Ice Working Group, 2018) is one of the most advanced and widely used ocean models. In 

the latest versions, starting from 4.0, it is possible to embed the AGRIF library (Blayo and Debreu, 1999), 

including also a sea ice model with several ice categories. The software of the library allows performing 

calculations simultaneously within a single task on several grids: a global, relatively coarsely resolved grid 

(hereafter “host”), is combined with a regionally confined, high-resolution grid (hereafter “nest”) allowing 

for two-way interactions: the host not only provides boundary conditions for the nest but also receives 

information from the nest. 

Within the framework of this approach, calculations were carried out to reproduce the circulation of the 

subpolar part of the Pacific Ocean. In particular, the model results allow tracing the characteristics of 

seasonal and interannual variability of water and heat exchange through the Bering Strait. 

 

Model configuration and data used 

The combined grid area of the model consists of a host at 11° horizontal resolution within ORCA1 

(362332 nodes) and 75 vertical levels and an embedded nest at about 0.25° resolution, covering the 

subarctic part of the Pacific Ocean, the Bering Sea, the Alaska Bay, and also part of the Arctic basin up to 

latitude 80°N. The multi-category ice model SI3 included five thickness categories: <0.6 m; 0.6-1.3 m; 1.3-

2.2 m; 2.2-3.8 m and > 3.8 m. 

A numerical experiment with a two-grid configuration of the model domain forced by DFS5.2 

(DRAKKAR Forcing Sets) included two stages: 1) the 6-year long spin-up integrations from 1995 to 2000, 

initialized with January temperature and salinity from the WOA13 Atlas and an ocean at rest, and 2) the 

ocean states at the end of the spin-up integrations are used to initialize the simulation for the period 

01.01.2001–29.12.2015 assimilating data of vertical distributions of temperature and salinity of water by 

Argo buoys (ftp://ftp. ifremer.fr/ifremer/argo/geo), satellite measurements of SST 

(ftp://ftp.nodc.noaa.gov/pub/data.nodc/ pathfinder/Version5.2/) and data of sea ice extent 

(ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-concentration/data).   

Data assimilation was carried out using a sequential cyclic scheme (Zelenko et al., 2016) and three-

dimensional variational analysis (Tsyrulnikov et al., 2010) with a 10-day assimilation window. 

 

Water and heat exchange through the Bering Strait 

Water and heat exchange through the Bering Strait (that in the model domain is located in the nest with 

the horizontal resolution of 0.25°) is one of the key elements of global circulation, since the dynamics of the 

eastern Arctic and the adjacent North Pacific waters significantly depends on the rate of transports of mass, 

heat and salt through this strait. 

The calculations show that the mass transport through the strait section is about 0.76 Sv (1 Sv=10
6 

m
3
/s) 

with a sufficiently large temporal variability reaching the maximum transport value up to 5.5 Sv (the root-

mean-square deviation (RMS) is 0.90 Sv). There is a negative time trend of ~ –0.0227 Sv per year, indicating 

a slowdown in the rate of water inflow from the Pacific Ocean into the Arctic basin (Fig. 1a). The mean 

transport through the strait is in good agreement with the available measurements (0.8 Sv) (Roach et 

al.,1995; Woodgate et al., 2005) and with model values in similar works, e.g. see (Kinney et al., 2014). 

Heat transport is characterized by a clearly pronounced seasonal variability that is superimposed by 

short-term variations (Fig. 1b). Its RMS of 1.90×10
13

 W exceeds the average value of the heat transport for 

the whole period of 1.25×10
13

 W against the backdrop of a slight negative trend of –2.22 *10
11 

W per year. 

Seasonal changes of the volume transport averaged for the period 2001–2015 are weak and the transport 

is most often directed from the Pacific Ocean to the Arctic basin with episodic changes in the direction of the 

flow (Fig.2a). Such changes of directions most often occur in the autumn-winter period (from October to 

January). The heat transport is most intense in the summer-autumn period from July to October, and its 

greatest interannual variability is in the period from May to December (Fig. 2b). 

ftp://ftp. ifremer.fr/ifremer/argo/geo
ftp://ftp.nodc.noaa.gov/pub/data.nodc/ pathfinder/Version5.2/
ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/psi-concentration/data


 

                 
Fig. 1. The variability of volume transport (in Sv, 1 Sv=10

6 
m

3
/s) (a) and heat flux (in 10

13
 W) referred 

to reference temperature of –2.6C (b) through the Bering Strait section according to the numerical 

experiment for 2001–2015. Positive values correspond to a transport from south to north. 

 

             
Fig. 2. Seasonal changes in water (a) and heat (b) exchanges through the Bering Strait averaged for 

2001–2015 (blue lines). The red dashed lines show the standard deviations in water and heat transports. 

 

Summary 

The presented version of modelling the subarctic zone of the Pacific Ocean and the southeastern part of 

the Arctic with NEMO ocean model coupled with the SI3 sea ice model using the AGRIF library for nested 

grids together with data assimilation allows tracing the dynamics of water and heat exchange through the 

Bering Strait, which is one of the key regions of the interoceanic water exchange.  

The model results are quite satisfactory when compared to observations and it shows the realism of the 

resulting model output of the data assimilation system with the detailing of individual water basin and, 

therefore, it indicates that such approach is promising for obtaining a detailed picture of the ocean states with 

moderate computational costs. 
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Introduction 
The National Weather Service (NWS) is building a coupled modeling system that will form the core of its
operational models for global weather (GFS), sub-seasonal (GEFS) and seasonal (SFS) forecasting. The
new coupled model under development is a part of NOAA’s Unified Forecast System (UFS), consisting of
the FV3 dynamical core for the atmosphere, MOM6 for the ocean, CICE6 for the sea-ice, and WW3 for
waves. In the current setup, ocean initial conditions are obtained from the existing operational Global
Ocean Data Assimilation System (GODAS) [1], which uses an older generation ocean model (MOM3 at 1-
deg resolution) and the 3DVar ocean DA implemented in 2003. As part of ongoing efforts to improve
forecasting, the NCEP’s Environmental Modeling Center (EMC) is developing a prototype version of the
JEDI-based Next Generation Global Ocean Data Assimilation System (NG-GODAS). The NG-GODAS
uses SOCA (Sea-ice Ocean Coupled Assimilation) as its ocean data assimilation component, and a more
advanced  ocean  model  (MOM6  at  1/0.25-deg  resolution).  The  NG-GODAS  is  forced  with  a  set  of
atmospheric fluxes from CFSR [2]. However, there exist very large known biases in the CFSR fluxes. For
example, in the western tropical Pacific and Indian oceans, the downward shortwave radiation from CFSR
is too high compared to other reanalysis products that have been calibrated to fit observations [3]. The
original GODAS used a very strong SST relaxation, which likely mitigated the effect of forcing biases.
However, the NG-GODAS will not use any SST relaxation, so these forcing biases must be appropriately
addressed.

Methodology 
To overcome this CFSR forcing bias issue, a climatological correction approach proposed in Sluka [3] is
implemented in NG-GODAS. The monthly climatology of the DRAKKAR forcing set (DFS52) [4] is used to
correct the CFSR monthly climatology. First, we calculated the monthly climatologies for both the DFS5.2
and CFSR. Then, two different types of correction factors are considered. The multiplicative factor is used
for fields that should not become negative (e.g., downward long/short wave, precipitation). An additive
correction factor is used for the 10m zonal/meridional wind so that in high wind events (e.g., Hurricanes)
the wind fields won’t  receive an overly large increase in intensity as they would with a multiplicative
correction  factor.  One  degree  NG-GODAS-free-runs  (no  data  assimilation)  with  and  without  bias
correction from 1988-1999 are conducted and the results are presented in this report to evaluate the
performance of the bias correction factors.

Results 
By applying the forcing bias-correction factors to the free-run NG-GODAS, modeled SST with lower bias
is produced when compared to the OISSTV2 dataset (Figure1). The mean absolute error (MAE) was
reduced from 0.52 C to 0.43 C, and the root mean square error (RMSE) was reduced from 0.73 C to⁰ ⁰ ⁰
0.59 C. We further checked the northward global ocean heat transport from simulations with and without⁰
bias correction. In Figure 2, after applying the climatological correction the CFSR (red line) exhibits similar
northward global ocean heat transport compared to the runs using other forcing (CORE-II and GEFS)
along the latitudes.

Summary 
The preliminary results show that modeled results are improved after applying the forcing bias correction.
The forcing bias-correction approach reported here is relatively easy to apply to other forcing datasets.
Currently, this bias correction has been implemented in the NG-GODAS 40-year reanalysis experiment.



Figure 1: Difference in the ocean SST from free-run NG-GODAS compared with OISST, averaged over 1988-1999.
Left: using uncorrected CFSR fluxes (left); Right: CFSR fluxes with bias correction. 

Figure2: Directly calculated 2000 mean northward global  ocean heat transport  from CORE‐II,  GEFS, and CFSR
simulations. Also shown are the implied mean northward global ocean heat transport derived from air‐sea surface
heat fluxes using NCEP reanalysis data (NCEP) and the observation‐based in situ estimates (Ganachaud & Wunsch,
2003 [5], G&W). CORE = Coordinated Ocean‐sea ice Reference Experiments.
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